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Abstract. The last decade has witnessed a rapid proliferation of su-
perscalar cache-based microprocessors to build high-end capability and
capacity computers primarily because of their generality, scalability, and
cost effectiveness. However, the recent development of massively paral-
lel vector systems is having a significant effect on the supercomputing
landscape. In this paper, we compare the performance of the recently-
released Cray X1 vector system with that of the cacheless NEC SX-6 vec-
tor machine, and the superscalar cache-based IBM Power3 and Power4
architectures for scientific applications. Overall results demonstrate that
the X1 is quite promising, but performance improvements are expected
as the hardware, systems software, and numerical libraries mature. Code
reengineering to effectively utilize the complex architecture may also lead
to significant efficiency enhancements.

1 Introduction

The last decade has witnessed a rapid proliferation of superscalar cache-based
microprocessors to build high-end capability and capacity computers [11]. This
is primarily because their generality, scalability, and cost effectiveness convinced
computer vendors, buyers, and users that vector architectures hold little promise
for future large-scale supercomputing systems.

Two major elements have dramatically affected this common perception. The
first is the recent availability of the Japanese Earth Simulator [3] that, based on
NEC SX-6 vector technology, is the world’s most powerful supercomputer both
in terms of peak (40.96 TFlops/s) and sustained LINPACK (87.5% of peak)
performance. The second is the constant degradation in sustained performance
(now typically less than 10% of peak) for scientific applications running on SMP
clusters built from processors using superscalar technology. The Earth Simulator,
on the other hand, has demonstrated sustained performance of almost 65% of
peak for a production global atmospheric simulation [10].

In order to quantify what a vector capability entails for scientific communities
that rely on modeling and simulation, it is critical to evaluate it in the context
of demanding computational algorithms. In our previous work [8], we conducted



an evaluation of the SX-6 for the NAS Parallel Benchmarks and a suite of six
applications. In this paper, we compare the performance of the Cray X1 vector
testbed system at Oak Ridge National Laboratory with that of the SX-6, and
the superscalar cache-based IBM Power3 and Power4 architectures for scientific
applications. Even though both the SX-6 and the X1 are vector architectures,
the X1 is unique in that it has a data cache (the SX-6 is cacheless).

We begin our performance evaluation by comparing memory bandwidth and
scatter/gather hardware behavior of a triad summation using regularly and ir-
regularly strided data. Next, we use two synthetic benchmarks: a fast Fourier
transform and an N-body solver to further compare the four target architec-
tures. Finally, we present performance results for three scientific applications
from cosmology (MADCAP), materials science (PARATEC), and fluid dynamics
(OVERFLOW-D). For each of these benchmarks and applications, we examine
the effort required to port them to the X1. Both intra- and inter-node parallel
performance (in GFlops/s per processor) is reported for our application suite
when running a small and a large test case. X1 results are generally promis-
ing; however, we expect performance improvements as the machine stabilizes
to production mode. Note that none of the applications have been specifically
optimized for the X1, so appropriate reengineering to utilize the architecture
effectively would also be beneficial.

2 Target Architectures

We give a brief description of the salient architectural features of the X1, as well
as those of the three other machines that were examined as part of this study.
Table 1 presents a summary of their node characteristics. Observe that the X1
has the highest peak performance and that its memory subsystem features a data
rate more than 50% higher than the SX-6 and an order of magnitude greater
than the Power systems.

Table 1. Architectural specifications of the X1, Power3, Power4, and SX-6 nodes

Node CPU/ Clock Peak Memory BW Peak MPI Latency
Type Node (MHz) (GFlops/s) (GB/s) Bytes/Flop (µsec)

X1 4 800 12.8 50 3.9 8.2
Power3 16 375 1.5 0.7 0.47 8.6
Power4 32 1300 5.2 2.3 0.44 3.0
SX-6 8 500 8.0 32 4.0 2.1

2.1 Cray X1

The recently-released X1 is designed to combine traditional vector strengths
with the generality and scalability features of modern superscalar cache-based
parallel systems. The computational core, called the single-streaming proces-
sor (SSP), contains two 32-stage vector pipes running at 800 MHz. Each SSP
contains 32 vector registers holding 64 double-precision words, and operates at
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Fig. 1. Architecture of the X1 node (in red), multi-streaming processor (in green), and
single-streaming processor (in blue).

3.2 GFlops/s peak for 64-bit data. All vector operations are performed under a
bit mask, allowing loop blocks with conditionals to compute without the need for
scatter/gather operations. Additionally, each SSP can have up to 512 addresses
simultaneously in flight, thus hiding the latency overhead for a potentially signif-
icant number of memory fetches. The SSP also contains a two-way out-of-order
superscalar processor running at 400 MHz with two 16KB caches (instruction
and data). The scalar unit operates at a quarter of the performance of the vector
pipes, making a high vector operation ratio critical for effectively utilizing the
underlying hardware. Fig. 1 shows a schematic of the X1 architecture.

The multi-streaming processor (MSP) combines four SSPs into one logical
computational unit. The four SSPs share a 2-way set associative 2MB data
Ecache, a unique feature for vector architectures that allows extremely high
bandwidth (25–51 GB/s) for computations with temporal data locality. An X1
node consists of four MSPs sharing a flat memory through 16 memory con-
trollers (MChips). Each MChip is attached to a local memory bank (MBank),
for an aggregate of 200 GB/s node bandwidth. Additionally, MChips can be used
to directly connect up to four nodes (16 MSPs) and participate in remote address
translation. To build large configurations, a modified 3D torus interconnect is
implemented via specialized routing chips. The torus topology allows scalability
to large processor counts with relatively few links compared with the crossbar
interconnect of the IBM Power systems or the Earth Simulator; however, the 3D
torus suffers from limited bisection bandwidth. Finally, the X1 is a globally ad-
dressable architecture, with specialized hardware support that allows processors
to directly read or write remote memory addresses in an efficient manner.
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The X1 programming model is designed to hierarchically leverage parallelism.
At the SSP level, vector instructions allow a large number of SIMD operations
(64) to execute in a pipeline fashion, thereby masking memory latency and al-
lowing for high sustained performance. MSP parallelism is achieved by distribut-
ing loop iterations across each of the four SSPs. The compiler must therefore
generate both vectorizing and multistreaming instructions to effectively utilize
the X1. Intra-node parallelism across the four MSPs is explicitly controlled us-
ing shared-memory directives such as OpenMP or Pthreads. Finally, traditional
message passing via MPI is used for coarse-grain parallelism at the inter-node
level. Additionally, the hardware supported globally addressable memory allows
efficient implementations of one-sided communication libraries (SHMEM, MPI-
2), as well as implicitly parallel programming languages (UPC and CAF).

All X1 experiments reported in this paper were performed on the 128-MSP
system running UNICOS/mp 2.3.07 and operated by Oak Ridge National Lab-
oratory.

2.2 IBM Power3

The Power3 experiments reported here were conducted on the 380-node IBM
pSeries system running AIX 5.1 and located at Lawrence Berkeley National
Laboratory. Each 375 MHz processor contains two floating-point units (FPUs)
that can issue a multiply-add (MADD) per cycle for a peak performance of
1.5 GFlops/s. The Power3 has a pipeline of only three cycles, diminishing the
penalty for mispredicted branches. The out-of-order architecture uses prefetching
to reduce pipeline stalls due to cache misses. The CPU has a 32KB instruction
cache, a 128KB 128-way set associative L1 data cache, and an 8MB four-way set
associative L2 cache with its own private bus. Each SMP node consists of 16 pro-
cessors connected to main memory via a crossbar. Multi-node configurations are
networked via the Colony switch using an omega-type topology.

2.3 IBM Power4

The Power4 experiments were performed on the 27-node IBM pSeries 690 system
running AIX 5.1 and operated by Oak Ridge National Laboratory. Each 32-
way SMP consists of 16 Power4 chips (organized as 4 MCMs), where a chip
contains two 1.3 GHz processor cores. Each core has two FPUs capable of a fused
MADD per cycle, for a peak performance of 5.2 GFlops/s. The superscalar out-
of-order architecture can exploit instruction level parallelism through its eight
execution units. Advanced branch prediction hardware minimizes the effects of
the relatively long pipeline (six cycles) necessitated by the high frequency design.
Each processor contains its own private L1 cache (64KB instruction and 32KB
data) with prefetch hardware; however, both cores share a 1.5MB unified L2
cache. The L3 is designed as a stand-alone 32MB cache, or to be combined with
other L3s on the same MCM to create a larger 128MB interleaved cache. Multi-
node configurations are currently available employing the Colony interconnect,
but future large-scale systems will use the lower latency Federation switch.
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2.4 NEC SX-6

The SX-6 results in this work were obtained on the single-node system running
SUPER-UX at the Arctic Region Supercomputing Center. The SX-6 vector pro-
cessor uses a dramatically different architectural approach than conventional
cache-based systems. Vectorization exploits regularities in the computational
structure of scientific applications to expedite uniform operations on independent
data sets. The 500 MHz SX-6 processor contains an 8-way replicated vector pipe
capable of issuing a MADD each cycle, for a peak performance of 8.0 GFlops/s
per CPU. The processors contain 72 vector registers, each holding 256 64-bit
words. For non-vectorizable instructions, the SX-6 contains a 500 MHz scalar
processor with a 64KB instruction cache, a 64KB data cache, and 128 general-
purpose registers. The 4-way superscalar unit has a peak of 1.0 GFlops/s and
supports branch prediction, data prefetching, and out-of-order execution.

Unlike conventional architectures, the SX-6 vector unit lacks data caches.
It therefore masks memory latencies by overlapping pipelined vector operations
with memory fetches. The SX-6 uses high speed SDRAM with a peak bandwidth
of 32 GB/s per CPU; enough to feed one operand per cycle to each of the
replicated pipe sets. The nodes can be used as building blocks of large-scale
multi-processor systems; for instance, the Earth Simulator contains 640 SX-6
nodes, connected through a single-stage crossbar.

3 Microbenchmarks

We first present the performance of a microbenchmark that measures some
low-level machine characteristics such as memory subsystem behavior and scat-
ter/gather hardware support. Fig. 2(a) presents asymptotic memory bandwidth
of the triad summation: a(i) = b(i) + s × c(i) using various memory strides for
the four architectures in our study. The SX-6 achieves the best bandwidth: up to
one, two, and three orders of magnitude better than the X1, Power4, and Power3,
respectively. Observe that certain strides impact X1 and SX-6 bandwidth quite
pronouncedly, by an order of magnitude or more. Analysis shows that strides
containing factors of two worsen performance due to increased DRAM bank
conflicts. On the Power architectures, a precipitous drop in the transfer rate
occurs for small strides, due to loss of cache reuse. This drop is more severe on
the Power4, because of its more complicated cache structure.

Fig. 2(b) presents single-processor memory bandwidth of indirect addressing
through vector triad gather/scatter operations of various data sizes. For smaller
sizes, the cache-based architectures show better data rates for indirect access
to memory, but for larger data sizes, the X1 and the SX-6 effectively utilize
their gather/scatter hardware support, outperforming the cache-based systems.
The X1 performs better than the SX-6 only for data sizes larger than 900KB;
however, asymptotic bandwidth for the X1 is only marginally higher. Overall, the
X1 memory subsystem behavior is surprisingly poor given its large peak memory
bandwidth (50 GB/s per processor) and sophisticated hardware support for non-
unit stride data access.
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Fig. 2. Single-processor triad performance (in MB/s) using (a) regularly strided data
of various strides, and (b) irregularly strided data of various sizes.

4 Synthetic Benchmarks

We next use two synthetic benchmarks to compare and contrast the performance
of the four target architectures. The first benchmark is FT, a fast Fourier trans-
form (FFT) kernel, from the NAS Parallel Benchmarks (NPB) suite [7]. FFT
is a simple evolutionary problem in which a time-dependent partial differential
equation is transformed to a set of uncoupled ordinary differential equations in
phase space. The bulk of the computational work consists of a set of discrete
multi-dimensional FFTs. Each FFT accesses the same single large array multiple
times, each time with a fixed but different stride.

The second synthetic benchmark is N-BODY, an irregularly structured code
that simulates the interaction of a system of particles in 3D over a number of
time steps, using the hierarchical Barnes-Hut algorithm. There are three main
stages: building an octree to represent the distribution of the particles; brows-
ing the octree to calculate the forces; and updating the particle positions and
velocities based on the computed forces. Data access is scattered, and involves
indirect addressing and pointer chasing. N-BODY requires all-to-all all-gather
communication and demonstrates unpredictable send/receive patterns. The MPI
version of this benchmark is derived from the SPLASH-2 suite [12].

FT and N-BODY results in GFlops/s per processor are presented in Fig. 3.
FT did not perform well on the vector machines in its original form because the
computations used a fixed block size of 16 words. Once the code was modified
to use a block size equal to the grid dimension, vector performance improved
significantly due to increased vector length. Speedup from one to two processors
on the X1 and the SX-6 is poor due to the time spent improving data local-
ity for cache-based machines (this is not performed for uniprocessor runs), but
subsequent scalability is excellent. Power4 performance suffers dramatically for
P = 64 because of inferior inter-node communication. In terms of sustained per-
formance, the X1 is comparable to the Power systems (an average of about 8%
of peak) but half that of the SX-6.
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Fig. 3. Per-processor performance (in GFlops/s) for FT (left) and N-BODY (right).

Performance for the N-BODY benchmark (see Fig. 3, right) is completely
different in that the scalar processors are far superior than the vector proces-
sors. For example, the Power3 achieves 7% of peak while the X1 runs at 0.3%.
The dominant part of the code is browsing the octree and computing the inter-
particle forces. Browsing the octree involves significant pointer chasing, which is
a very expensive operation on vector machines and cannot be vectorized well.
We tried to improve vectorization by separating the octree browsing and force
calculation phases; however, results were only negligibly better. These results
demonstrate that although the vector architectures are equipped with scalar
units, non-vectorized codes will perform extremely poorly on these platforms.

5 Scientific Applications

Three scientific applications were chosen to measure and compare the perfor-
mance of the X1 with that of the SX-6, Power3, and Power4. The applications
are: MADCAP, a cosmology code that extracts tiny signals from extremely noisy
observations of the Cosmic Microwave Background; PARATEC, a first principles
materials science code that solves the Kohn-Sham equations to obtain electronic
wavefunctions; and OVERFLOW-D, a computational fluid dynamics production
code that solves the Navier-Stokes equations around complex aerospace config-
urations. SX-6 results are presented for only one node (P ≤ 8) while those on
Power3 (P > 16), Power4 (P > 32), and X1 (P > 4) are for multi-node runs.
Performance is shown in GFlops/s per processor. To characterize the level of
vectorization, we also report average vector length for the X1. All performance
numbers were obtained with hpmcount on the Power systems, ftrace on the
SX-6, and pat on the X1. Missing results will be presented in the final paper.

5.1 Cosmology

From the application area of cosmology, we examined the Microwave Anisotropy
Dataset Computational Analysis Package (MADCAP) [1]. MADCAP imple-
ments the current optimal general algorithm for extracting the most useful cos-
mological information from total-power observations of the Cosmic Microwave
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Background (CMB). The CMB is a snapshot of the Universe when it first became
electrically neutral some 400,000 years after the Big Bang. The tiny anisotropies
in the temperature and polarization of the CMB radiation are sensitive probes
of early Universe cosmology, and measuring their detailed statistical properties
has been a high priority in the field for over 30 years. MADCAP was designed
to calculate the maximum likelihood two-point angular correlation function (or
power spectrum) of the CMB given a noisy, pixelized sky map and its associated
pixel-pixel noise correlation matrix.

MADCAP recasts the extraction of a CMB power spectrum from a sky map
into a problem in dense linear algebra, and exploits ScaLAPACK libraries for
its efficient parallel solution. The goal is to maximize the likelihood function of
all possible cosmologies given the data d. With minimal assumptions, this can
be reduced to maximizing d’s (reduced to a pixelized sky map) Gaussian log-
likelihood L(d|Cb) = − 1

2
(dT D−1 d−Tr [ln D]) over all possible power spectrum

coefficients Cb, where D =
〈

ddT
〉

is the data correlation matrix.

Using Newton-Raphson iteration to locate the peak of L(d|Cb) requires the
evaluation of its first two derivatives with respect to Cb. This involves first build-
ing D as the sum of the experiment-specific noise correlations and theory-specific
signal correlations, and then solving a square linear system for each of the Nb

spectral coefficients. To minimize communication overhead, this step is com-
puted through explicit inversion of D (symmetric positive definite) and direct
matrix-matrix multiplication. These operations scale as Nb N 3

p for a map with
Np pixels, typically 104–105 for real experiments.

To take advantage of large parallel computer systems while maintaining high
performance, the MADCAP implementation has recently been rewritten to ex-
ploit the parallelism inherent in performing Nb independent matrix-matrix mul-
tiplications. The analysis is split into two steps: first, all the processors build
and invert D; then, the processors are divided into gangs, each of which per-
forms a subset of the multiplications (gang-parallel). Since the matrices involved
are block-cyclically distributed over the processors, this incurs the overhead of
redistributing the matrices between the two steps.

X1 Porting Porting MADCAP to vector architectures is straightforward, since
the package utilizes ScaLAPACK to perform dense linear algebra calculations.
However, it was necessary to rewrite the dSdC routine that computes the pixel-
pixel signal correlation matrices, scales as Nb N 2

p , and does not have any BLAS
library calls. The basic structure of dSdC loops over all pixels and calculates
the value of Legendre polynomials up to some preset degree for the angular
separation between these pixels. On superscalar architectures, this constituted
a largely insignificant amount of work, but since the computation of the poly-
nomials is recursive, prohibiting vectorization, the cost was appreciable on both
the X1 and the SX-6. The dSdC routine was therefore rewritten so that at each
iteration of the Legendre polynomial recursion, a large batch of angular separa-
tions was computed in an inner loop. Compiler directives were required to ensure
vectorization for both the vector machines.
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Table 2. Per-processor performance of MADCAP on target machines

Power3 Power4 SX-6 X1

P GFlops/s % Peak GFlops/s % Peak GFlops/s % Peak GFlops/s % Peak

Small synthetic case: Np = 8192, Nb = 16, without gang-parallelism

1 0.844 56.3 1.98 38.1 4.55 56.9 5.36 41.9
4 0.656 43.7 1.23 23.7 2.66 33.2 4.26 33.3
9 0.701 46.7 — — 3.22 25.2

16 0.520 34.7 0.731 14.1 — — 2.48 19.4
25 0.552 36.8 — — 1.84 14.4

Large real case: Np = 14966, Nb = 16, with gang-parallelism

4 0.831 55.4 1.90 36.5 4.24 53.0 5.66 44.2
8 0.688 45.9 1.62 31.2 3.24 40.5

16 0.615 41.0 1.26 24.2 — —
32 0.582 38.8 0.804 15.5 — —
64 0.495 33.0 0.524 10.1 — —

Performance Results Table 2 first shows the performance of MADCAP for
a small synthetic dataset with Np = 8192 and Nb = 16 on each of the four
architectures under investigation, without the use of gang-parallelism. Note that
for maximum efficiency, the processor sizes are set to squares of integers. As
expected, the single processor runs achieve a significant fraction of the peak
performance since the analysis is dominated by BLAS3 operations (at least 60%).
However, as we use more processors with a fixed data size, the density of the
data on each processor decreases, the communication overhead increases, and
performance drops significantly. Observe that the X1 attains the highest raw
performance, achieving factors of 6.5x, 3.5x, and 1.6x speedup compared with
the Power3, Power4, and SX-6 respectively on 4 processors. With increasing
processor counts, the fraction of time spent in BLAS3 computations decreases,
causing performance degradation. The average vector length was about 62 per
SSP (vector length 64) for all processor counts. It is therefore surprising that
MADCAP did not attain a higher percentage of peak on the X1.

Table 2 also shows the performance of the gang-parallel implementation of
MADCAP for a larger real dataset from the Millimeter-wave Anisotropy Exper-
iment Imaging Array (MAXIMA) [5], with Np = 14996 and Nb = 16. MAX-
IMA is a balloon-borne experiment with an array of 16 bolometric photome-
ters optimized to map the CMB anisotropy over hundreds of square degrees.
The gang parallel technique is designed to preserve the density of data during
matrix-matrix multiplication and produce close to linear speedup. In this regard,
the results on the Power3 and Power4 are somewhat disappointing. This is be-
cause the other steps in MADCAP do not scale that well, and the efficiency of
each gang suffers due to increased memory contention. Currently, we cannot run
more than one (4-processor) gang on the X1 because the ScaLAPACK function
blacs gridmap does not work properly. This function is required to map a set of
MPI tasks onto several distinct BLACS contexts, one per gang. Cray engineers
are working to address this problem.
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5.2 Materials Science

The application that we selected from materials science is called PARATEC:
PARAllel Total Energy Code [9]. The code performs ab-initio quantum-mechani-
cal total energy calculations using pseudopotentials and a plane wave basis set.
The pseudopotentials are of the standard norm-conserving variety. Forces can
be easily calculated and used to relax the atoms into their equilibrium posi-
tions. PARATEC uses an all-band conjugate gradient (CG) approach to solve
the Kohn-Sham equations of Density Functional Theory (DFT) and obtain the
ground-state electron wavefunctions. DFT is the most commonly used technique
in materials science, having a quantum mechanical treatment of the electrons,
to calculate the structural and electronic properties of materials. Codes based
on DFT are widely used to study properties such as strength, cohesion, growth,
magnetic, optical, and transport for materials like nanostructures, complex sur-
faces, and doped semiconductors.

In solving the Kohn-Sham equations using a plane wave basis, part of the
calculation is carried out in real space and the remainder in Fourier space using
specialized parallel 3D FFTs to transform the wavefunctions. The code spends
most of its time (over 70% for a large system) in vendor supplied BLAS3 and
1D FFTs on which the 3D FFTs are built. For this reason, PARATEC generally
obtains a high percentage of peak performance on different platforms. The code
exploits fine-grained parallelism by dividing the plane wave components for each
electron among the different processors [4].

X1 Porting PARATEC is an MPI package designed primarily for massively
parallel computing platforms, but can also run on serial machines. Since much
of the computation involves FFTs and BLAS3, an efficient vector implementa-
tion of the code requires these libraries to vectorize well. While this is true for
the BLAS3 routines on the X1, the standard FFTs run at a low percentage of
peak. Some code transformations were therefore required to convert the 3D FFT
routines to simultaneous (“multiple”) 1D FFT calls. Compiler directives were
also inserted in certain code segments to force vectorization on the X1 in loops
where indirect indexing is used.

Performance Results The results in Table 3 are for 3 CG steps of 250 and
432 Si-atom bulk systems and a standard LDA run of PARATEC with a 25
Ry cut-off using norm-conserving pseudopotentials. A typical calculation would
require between 20 and 60 CG iterations to converge the charge density.

Results show that PARATEC vectorizes well on the SX-6 for the small test
case. The X1 is significantly slower, even though it has a higher peak speed. One
reason is that, on the X1, the code spends a much smaller percentage of the
total time in highly optimized 3D FFTs and BLAS3 libraries than any of the
other machines. This lowers sustained performance as other parts of the code
run well below peak. Some of the loss in X1 scaling for P > 4 is also due to inter-
node communication and shorter vector lengths. The parallel 3D FFTs require
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Table 3. Per-processor performance of PARATEC on target machines

Power3 Power4 SX-6 X1

P GFlops/s % Peak GFlops/s % Peak GFlops/s % Peak GFlops/s % Peak

Small case: 250 Si-atom bulk system

1 0.915 61.0 2.29 44.0 5.09 63.6 2.97 23.2
2 0.915 61.0 2.25 43.3 4.98 62.3 2.82 22.0
4 0.920 61.3 2.21 42.5 4.70 58.8 2.65 20.7
8 0.911 60.7 2.09 40.2 4.22 52.8 2.48 19.4

16 0.840 56.0 1.57 30.2 — — 1.99 15.5
32 0.725 48.3 1.33 25.6 — — 1.67 13.0

Large case: 432 Si-atom bulk system

32 0.959 63.9 1.49 28.7 — — 2.55 19.9
64 0.736 49.1 — — 1.97 15.4
96 0.523 34.9 — — 1.49 11.6

128 0.516 34.4 — — 1.25 9.8

a transformation of the distributed grid which results in global communication.
The average vector length drops from 49 for the uni-processor run to 44 on 16
processors. Performance for the large test case is poor for P = 128, primarily
due to low average vector length (35) and increased communication overhead.
PARATEC runs efficiently on the Power3, but performance on the Power4 is
affected by the relatively poor ratio of memory bandwidth to peak performance.
Nonetheless, the Power systems obtain a much higher percentage of peak than
the X1 for all runs. Faster FFT libraries and some code rewriting to increase
vectorization in conjunction with compiler directives could significantly improve
the performance of PARATEC on the X1.

5.3 Fluid Dynamics

In the area of computational fluid dynamics (CFD), we selected the NASA
Navier-Stokes production application called OVERFLOW-D [6]. The code uses
the overset grid methodology [2] to perform high-fidelity viscous simulations
around realistic aerospace configurations. It is popular within the aerodynamics
community due to its ability to handle complex designs with multiple geomet-
ric components. OVERFLOW-D is explicitly designed to simplify the modeling
of problems when components are in relative motion. The main computational
logic at the top level of the sequential code consists of a time-loop and a nested
grid-loop. Within the grid-loop, solutions to the flow equations are obtained
on the individual grids with imposed boundary conditions. Overlapping bound-
ary points or inter-grid data are updated from the previous time step using a
Chimera interpolation procedure. Upon completion of the grid-loop, the solution
is automatically advanced to the next time step by the time-loop. The code uses
finite differences in space, with a variety of implicit/explicit time stepping.

The MPI version of OVERFLOW-D takes advantage of the overset grid sys-
tem, which offers a natural coarse-grain parallelism. A bin-packing algorithm
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clusters individual grids into groups, each of which is then assigned to an MPI
process. The grouping strategy uses a connectivity test that inspects for an over-
lap between a pair of grids before assigning them to the same group, regardless of
the size of the boundary data or their connectivity to other grids. The grid-loop
in the parallel implementation is subdivided into two procedures: a group-loop
over groups, and a grid-loop over the grids within each group. Since each MPI
process is assigned to only one group, the group-loop is executed in parallel,
with each group performing its own sequential grid-loop. The inter-grid bound-
ary updates within each group are performed as in the serial case. Inter-group
boundary exchanges are achieved via MPI asynchronous communication calls.

X1 Porting The MPI implementation of OVERFLOW-D is based on the se-
quential version that was designed to exploit early Cray vector machines. The
same basic program structure is used on all four target architectures except for
a few minor changes in some subroutines to meet specific compiler requirements.
In porting the code to the X1, three binary input files also had to be converted
from the default IEEE format to 64-bit (integer*8 and real*8) data types.
Furthermore, for data consistency between FORTRAN and C, the int data in
all C functions were converted to long int. The main loops in compute-intensive
sections of the code were multi-streamed and vectorized automatically by the
compiler; however, modifications were made to allow vectorization of certain
other loops via pragma directives.

Performance Results The results in Table 4 are for 100 time steps of an
OVERFLOW-D simulation of vortex dynamics in the complex wake flow region
around hovering rotors. A typical calculation would require several thousand
time steps. Note that the current MPI implementation of OVERFLOW-D does
not allow uni-processor runs. The grid system for the small test case consists of
41 blocks and about 8 million grid points, while that for the large case has 857
blocks and 69 million grid points. The Cartesian off-body wake grids surround
the curvilinear near-body grids with uniform resolution, but become gradually
coarser upon approaching the outer boundary of the computational domain.

Results for the small case demonstrate that the X1 is about a factor of 2x
slower than the SX-6 and 1.5x (4x) faster than the Power4 (Power3), based on
GFlops/s per processor. The SX-6 outperforms the other machines; e.g. its ex-
ecution time for P = 8 (1.6 secs) is 90%, 50%, and 21% of the P = 16 timings
for the X1, Power4, and Power3. The SX-6 also consistently achieves the highest
percentage of peak performance while the X1 is the lowest. Scalability is similar
for all machines except the Power4, with computational efficiency decreasing for
a larger number of MPI tasks primarily due to load imbalance. Performance
is particularly poor for P = 32 when 41 zones have to be distributed to 32
processors. On the X1, a relatively small average vector length of 24 per SSP
explains why the code achieves an aggregate of only 3.6 GFlops/s on 8 pro-
cessors (3.5% of peak). Although the same general trends hold for the large
case, performance is slightly better (for the same number of processors) because
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Table 4. Per-processor performance of OVERFLOW-D on target machines

Power3 Power4 SX-6 X1

P GFlops/s % Peak GFlops/s % Peak GFlops/s % Peak GFlops/s % Peak

Small case: 8 million grid points

2 0.133 8.9 0.394 7.6 1.13 14.1 0.513 4.0
4 0.117 7.8 0.366 7.0 1.11 13.9 0.479 3.7
8 0.118 7.9 0.362 7.0 0.97 12.1 0.445 3.5

16 0.097 6.5 0.210 4.0 — — 0.433 3.4
32 0.087 5.8 0.115 2.2 — — 0.278 2.2

Large case: 69 million grid points

16 0.115 7.7 0.282 5.4 — — 0.456 3.6
32 0.109 7.3 0.246 4.7 — — 0.413 3.2
64 0.105 7.0 0.203 3.9 — — 0.390 3.0
96 0.100 6.7 0.176 3.4 — — 0.360 2.8

128 0.094 6.3 0.146 2.8 — — 0.319 2.5

of higher computation-to-communication ratio and better load balance. Reor-
ganizing OVERFLOW-D would achieve improve vector performance; however,
extensive effort would be required to modify this production code.

6 Summary and Conclusions

This paper presented the performance of the Cray X1 vector testbed system, and
compared it against the cacheless NEC SX-6 vector machine and the superscalar
cache-based IBM Power3/4 architectures, across a range of scientific kernels and
applications. Microbenchmarking showed that the X1 memory subsystem be-
haved rather poorly, given its large peak memory bandwidth and sophisticated
hardware support for non-unit stride data access. Table 5 summarizes the perfor-
mance of the X1 against the three other machines, for our synthetic benchmarks
and application suite. All our codes, except N-BODY, were readily amenable to
vectorization via minor code changes, compiler directives, and the use of ven-
dor optimized numerical libraries. Results show that the X1 achieves high raw
performance relative to the Power systems for the computationally intensive ap-
plications; however, the SX-6 demonstrated faster runtimes in all cases except for
MADCAP. Surprisingly, the X1 did not achieve a high fraction of peak perfor-
mance compared with the other platforms, even though reasonably large vector
lengths were attained for the applications. The N-BODY kernel is an irregularly
structured code poorly suited for vectorization, and highlights the extremely low
performance one should expect when running scalar codes on this architecture.

Overall, the X1 performance is quite promising, and improvements are ex-
pected as the hardware, systems software, and numerical libraries mature. It is
important to note that X1-specific code optimizations have not been performed
at this time. This complex vector architecture contains both data caches and
multi-streaming processing units, and the optimal programming methodology is
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Table 5. Summary overview of X1 performance

Application Scientific Lines X1 Speedup vs.

Name Discipline of Code P Power3 Power4 SX-6 P Power3 Power4

FT Kernel 2,000 8 10.0 2.9 0.9 64 11.1 12.7
N-BODY Kernel 1,500 8 0.4 0.2 0.7 64 0.3 0.1
MADCAP Cosmology 5,000 4 6.5 3.5 1.6
PARATEC Mat. Sc. 50,000 8 2.7 1.2 0.6 128 2.4
OVERFLOW-D CFD 100,000 8 3.8 1.2 0.5 128 3.4 2.2

yet to be established. For example, increasing cache locality through data block-
ing will lower the memory access overhead; however, this strategy may reduce
the vector length and cause performance degradation. Examining these tradeoffs
will be the focus of our future work.
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